Eigenvalues and energy functionals with monotonicity formulae under Ricci flow

نویسنده

  • Jun-Fang Li
چکیده

Abstract. In this note, we construct families of functionals of the type of F-functional and W-functional of Perelman. We prove that these new functionals are nondecreasing under the Ricci flow. As applications, we give a proof of the theorem that compact steady Ricci breathers must be Ricci-flat. Using these new functionals, we also give a new proof of Perelman’s no non-trivial expanding breather theorem. Furthermore, we prove that compact expanding Ricci breathers must be Einstein by a direct method. In this note, we also extend Cao’s methods of eigenvalues[1] and improve their results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monotonicity Formulas under Rescaled Ricci Flow

In this short notes, we discuss monotonicity formulas under various rescaled versions of Ricci flow. The main result is Theorem 2.1. 1. Functionals Wek from rescaled Ricci flow point of view This is the research notes when the author wrote [Li07]. In the first section, we discuss the relation between functionals Wek(g, f, τ) and rescaled Ricci flow. In Theorem 4.2 [Li07] , we have defined funct...

متن کامل

Monotonicity of Eigenvalues and Certain Entropy Functional under the Ricci Flow

Geometric monotone properties of the first nonzero eigenvalue of Laplacian form operator under the action of the Ricci flow in a compact nmanifold ( ) 2 ≥ n are studied. We introduce certain energy functional which proves to be monotonically non-decreasing, as an application, we show that all steady breathers are gradient steady solitons, which are Ricci flat metric. The results are also extend...

متن کامل

First Eigenvalues of Geometric Operators under the Ricci Flow

In this paper, we prove that the first eigenvalues of −∆+ cR (c ≥ 1 4 ) are nondecreasing under the Ricci flow. We also prove the monotonicity under the normalized Ricci flow for the cases c = 1/4 and r ≤ 0. 1. First eigenvalue of −∆+ cR Let M be a closed Riemannian manifold, and (M,g(t)) be a smooth solution to the Ricci flow equation ∂ ∂t gij = −2Rij on 0 ≤ t < T . In [Cao07], we prove that a...

متن کامل

“QUINZENA DE GEOMETRIA” Dragomir Tsonev (UFAM, Manaus) Title: ON THE SPECTRA OF GEOMETRIC OPERATORS EVOLVING WITH GEOMETRIC FLOWS

Dragomir Tsonev (UFAM, Manaus) Title: ON THE SPECTRA OF GEOMETRIC OPERATORS EVOLVING WITH GEOMETRIC FLOWS Abstract: In this work we generalise various recent results on the evolution and monotonicity of the eigenvalues of certain geometric operators under specified geometric flows. Given a compact Riemannian manifold (M, g(t)) and a smooth function η ∈ C(M) we consider the family of operators∆−...

متن کامل

First Variation of the Log Entropy Functional along the Ricci Flow

In this note, we establish the first variation formula of the adjusted log entropy functional Ya introduced by Ye in [14]. As a direct consequence, we also obtain the monotonicity of Ya along the Ricci flow. Various entropy functionals play crucial role in the singularity analysis of Ricci flow. Let (M, g(t)) be a smooth family of Riemannian metrics on a closed manifold M and suppose g(t) is a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007